Language Translation Principles

...or, how to explain C++ to a linguist
Attributes of a language

• Syntax: rules describing use of language tokens
• Semantics: logical meaning of combinations of tokens
• In a programming language, “tokens” include identifiers, keywords, and punctuation
Linguistic correctness

• A **syntactically correct** program is one in which the tokens are arranged so that the code can be successfully translated into a lower-level language

• A **semantically correct** program is one that produces correct results
Language translation tools

• Parser: scans source code, compares with established syntax rules
• Code generator: replaces high level source code with semantically equivalent low level code
Techniques to describe syntax of a language

- Grammars: specify how you combine atomic elements of language (characters) to form legal strings (words, sentences)
- Finite State Machines: specify syntax of a language through a series of interconnected diagrams
- Regular Expressions: symbolic representation of patterns describing strings; applications include forming search queries as well as language specification
Elements of a Language

- Alphabet: finite, non-empty set of characters
 - not precisely the same thing we mean when we speak of natural language alphabet
 - for example, the alphabet of C++ includes the uppercase and lowercase letters of the English alphabet, the digits 0-9, and the following punctuation symbols:
 `{,},[,],(),+,,-,*,/,%,=,>,<,!,&,|,’,”,,,,:,:,\`
 - Pep/8 alphabet is similar, but uses less punctuation
 - Language of real numbers has its own alphabet; the set of characters `{0,1,2,3,4,5,6,7,8,9,+,,-,.}`
Language as ADT

• A language is an example of an Abstract Data Type (ADT)

• An ADT has these characteristics:
 – Set of possible values (an alphabet)
 – Set of operations on those values

• One of the operations on the set of values in a language is concatenation
Concatenation

• Concatenation is the joining of two or more characters to form a string

• Many programming language tokens are formed this way; for example:
 – > and = form >=
 – & and & form &&
 – 1, 2, 3 and 4 form 1234

• Concatenation always involves two operands – either one can be a string or a single character
String characteristics

• The number of characters in a string is the string’s length

• An empty string is a string with length 0; we denote the empty string with the symbol ε

• The ε is the identity element for concatenation; if x is string, then:
 $$\varepsilon x = x \varepsilon = x$$
Closure of an alphabet

• The set of all possible strings that can be formed by concatenating elements from an alphabet is the alphabet’s closure, denoted T^* for some alphabet T

• The closure of an alphabet includes strings that are not valid tokens in the language; it is not a finite set

• For example, if R is the real number alphabet, then R^* includes:
 -0.092 and 563.18 but also .0.0.- and 2-4-2.9..-5.
Languages & Grammars

• A language is a subset of the closure of an alphabet
• A grammar specifies how to concatenate symbols from an alphabet to form legal strings in a language
Parts of a grammar

• N: a nonterminal alphabet; each element of N represents a group of characters from:
 – T: a terminal alphabet
 – P: a set of rules for string production; uses nonterminals to describe language structure
 – S: the start symbol, an element of N
Terminal vs. non-terminal symbols

- A non-terminal symbol is used to describe or represent a set of terminal symbols.
- For example, the following standard data types are terminal symbols in C++ and Java: int, double, float, char.
- The non-terminal symbol <type-specifier> could be used to represent any or all of these.
Valid strings

- S (the start symbol) is a single symbol, not a set
- Given S and P (rules for production), you can decide whether a set of symbols is a valid string in the language
- Conversely, starting from S, if you can generate a string of terminal symbols using P, you can create a valid string
Productions

A → w

a non-terminal produces a string of terminals & non-terminals
Derivations

• A grammar specifies a language through the derivation process:
 – begin with the start symbol
 – substitute for non-terminals using rules of production until you get a string of terminals
Example: a grammar for identifiers (a toy example)

- \(N = \{<\text{identifier}>, <\text{letter}>, <\text{digit}>\} \)
- \(T = \{a, b, c, 1, 2, 3\} \)
- \(P = \) the productions: (\(\rightarrow \) means “produces”)
 1. \(<\text{identifier}> \rightarrow <\text{letter}>\)
 2. \(<\text{identifier}> \rightarrow <\text{identifier}><\text{letter}>\)
 3. \(<\text{identifier}> \rightarrow <\text{identifier}><\text{digit}>\)
 4. \(<\text{letter}> \rightarrow a\)
 5. \(<\text{letter}> \rightarrow b\)
 6. \(<\text{letter}> \rightarrow c\)
 7. \(<\text{digit}> \rightarrow 1\)
 8. \(<\text{digit}> \rightarrow 2\)
 9. \(<\text{digit}> \rightarrow 3\)
- \(S = <\text{identifier}> \)
Example: deriving a12bc:

\[
\begin{align*}
<\text{identifier}> & \Rightarrow <\text{identifier}>\langle\text{letter}\rangle \text{ (rule 2)} \\
& \Rightarrow <\text{identifier}>c \text{ (rule 6)} \\
\Rightarrow \text{ means} & \Rightarrow <\text{identifier}>\langle\text{letter}\rangle c \text{ (rule 2)} \\
\Rightarrow \text{ derives in one} & \Rightarrow <\text{identifier}>bc \text{ (rule 5)} \\
\text{ step} & \Rightarrow <\text{identifier}>\langle\text{digit}\rangle bc \text{ (rule 3)} \\
& \Rightarrow <\text{identifier}>2bc \text{ (rule 8)} \\
& \Rightarrow <\text{identifier}>\langle\text{digit}\rangle 2bc \text{ (rule 3)} \\
& \Rightarrow <\text{identifier}>12bc \text{ (rule 7)} \\
& \Rightarrow <\text{letter}>12bc \\
& \Rightarrow \text{a12bc}
\end{align*}
\]
Closure of derivation

• The symbol \Rightarrow^* means “derives in 0 or more steps”

• A language specified by a grammar consists of all strings derivable from the start symbol using the rules of production
 – provides operational test for membership in the language
 – if a string can’t be derived using production rules, it isn’t in the language
Example: attempting to derive 2a

\[
\text{<identifier>} \Rightarrow \text{<identifier><letter>}
\]
\[\Rightarrow \text{<identifier>}a\]

• Since there is no \text{<identifier>} \rightarrow \text{<digit>}
 combination in the production rules, we can’t proceed any further

• This means that 2a isn’t a valid string in our language
A grammar for signed integers

- $N = \{I, F, M\}$
 - I means integer
 - F means first symbol; optional sign
 - M means magnitude

- $T = \{+,-,d\}$ (d means digit 0-9)

- $P =$ the productions:
 1. $I \rightarrow FM$
 2. $F \rightarrow +$
 3. $F \rightarrow -$
 4. $F \rightarrow \varepsilon$ (means +/- is optional)
 5. $M \rightarrow dM$
 6. $M \rightarrow d$

- $S = I$
Examples

• Deriving 14:

\[I \Rightarrow FM \Rightarrow \epsilon M \Rightarrow dM \Rightarrow dd \Rightarrow 14 \]

• Deriving -7:

\[I \Rightarrow FM \Rightarrow -M \Rightarrow -d \Rightarrow -7 \]
Recursive rules

• Both of the previous examples (identifiers, integers) have rules in which a nonterminal is defined in terms of itself:
 – `<identifier> → <identifier><letter>` and
 – `M → dM`

• Such rules produce languages with infinite sets of legal sentences
Context-sensitive grammar

- A grammar in which the production rules may contain more than one non-terminal on the left side.
- The opposite (all of the examples we have seen thus far), have production rules restricted to a single non-terminal on the left: these are known as context-free grammars.
Example

- $N = \{A,B,C\}$
- $T = \{a,b,c\}$
- P = the productions:
 1. $A \rightarrow aABC$
 2. $A \rightarrow abC$
 3. $CB \rightarrow BC$
 4. $bB \rightarrow bb$
 5. $bC \rightarrow bc$
 This rule is context-sensitive: C can be substituted with c only if C is immediately preceded by b
 6. $cC \rightarrow cc$

- $S = A$
Context-sensitive grammar

- \(N = \{A, B, C\} \)
- \(T = \{a, b, c\} \)
- \(P = \) the productions
 1. \(A \rightarrow aABC \)
 2. \(A \rightarrow abC \)
 3. \(CB \rightarrow BC \)
 4. \(bB \rightarrow bb \)
 5. \(bC \rightarrow bc \)
 6. \(cC \rightarrow cc \)
- \(S = A \)

Example:

aaabbbcccc is a valid string by:

\[
\begin{align*}
A & \rightarrow aABC (1) \\
& \rightarrow aaABCBC (1) \\
& \rightarrow aaabCBCBC (2) \\
& \rightarrow aaabBCCBC (3) \\
& \rightarrow aaabBCBCC (3) \\
& \rightarrow aaabBBCCC (3) \\
& \rightarrow aaabbBCCC (4) \\
& \rightarrow aaabbbCCC (5) \\
& \rightarrow aaabbbC (6) \\
& \rightarrow aaabbbccc (6)
\end{align*}
\]

Here, we substituted \(c \) for \(C \); this is allowable only if \(C \) has \(b \) in front of it.

\[
\begin{align*}
& \rightarrow aaabbbbcC (5) \\
& \rightarrow aaabbbcccC (6) \\
& \rightarrow aaabbbccc (6)
\end{align*}
\]
Valid & invalid strings from previous example:

- Valid:
 - abc
 - aabbcc
 - aabc

- Invalid:
 - cba
 - bbbccc
 - aaac

The grammar describes a language consisting of strings that start with a number of a’s, followed by an equal number of b’s and c’s; this language can be defined mathematically as:

\[L = \{a^n b^n c^n \mid n > 0\} \]

Note: \(a^n \) means the concatenation of \(n \) a’s
A grammar for expressions

N = {E, T, F} where:
 E: expression
 T: term – T = {+, *, (,), a}
 F: factor

P: the productions:
 1. E -> E + T
 2. E -> T
 3. T -> T * F
 4. T -> F
 5. F -> (E)
 6. F -> a

S = E
Applying the grammar

• You can’t reach a valid conclusion if you don’t have a valid string, but the opposite is not true.

• For example, suppose we want to parse the string \((a * a) + a\) using the grammar we just saw.

• First attempt:

 \[E \rightarrow T \text{ (by rule 2)} \]

 \[\rightarrow F \text{ (by rule 4)} \]

 … and, we’re stuck, because \(F\) can only produce \((E)\) or \(a\); so we reach a dead end, even though the string is valid.
Applying the grammar

• Here’s a parse that works for \((a^*a)+a\):

 \[
 E \Rightarrow E + T \text{ (rule 1)} \\
 \Rightarrow T + T \text{ (rule 2)} \\
 \Rightarrow F + T \text{ (rule 4)} \\
 \Rightarrow (E) + T \text{ (rule 5)} \\
 \Rightarrow (T) + T \text{ (rule 2)} \\
 \Rightarrow (T^*F) + T \text{ (rule 3)} \\
 \Rightarrow (T^*a) + T \text{ (rule 6)} \\
 \Rightarrow (F^*a) + F \text{ (rule 4 applied twice)} \\
 \Rightarrow (a^*a) + a \text{ (rule 6 applied twice)}
 \]
Deriving a valid string from a grammar

• Arbitrarily pick a nonterminal on right side of current intermediate string & select rules for substitution until you get a string of terminals

• Automatic translators have more difficult problem:
 – given string of terminals, determine if string is valid, then produce matching object code
 – only way to determine string validity is to derive it from the start string of the grammar – this is called parsing
The parsing problem

• Automatic translators aren’t at liberty to pick rules randomly (as illustrated by the first attempt to translate the preceding expression)

• Parsing algorithm must search for the right sequence of substitutions to derive a proposed string

• Translator must also be able to prove that no derivation exists if proposed string is not valid
Syntax tree

• A parse routine can be represented as a tree
 – start symbol is the root
 – interior nodes are nonterminal symbols
 – leaf nodes are terminal symbols
 – children of an interior node are symbols from right side of production rule substituted for parent node in derivation
Syntax tree for \((a^2+a)+a\)
Grammar for a programming language

• A grammar for a subset of the C++ language is laid out on pages 340-341 of the textbook

• A sampling (suitable for either C++ or Java) is given on the next couple of slides
Rules for declarations

<declaration> -> <type-specifier><declarator-list>;
<type-specifier> -> char | int | double
(remember, this is *subset* of actual language)
<declarator-list> -> <identifier> |
 <declarator-list> , <identifier>
<identifier> -> <letter> |
 <identifier><letter> |
 <identifier><digit>
<letter> -> a|b|c| ... |z|A|B|...|Z
<digit> -> 0|1|2|3|4|5|6|7|8|9
Rules for control structures

<selection-statement> ->
 if (<expression>) <statement> |
 if (<expression>) <statement>
 else <statement>

<iteration-statement> ->
 while (<expression>) <statement> |
 do <statement> while (<expression>) ;
Rules for expressions

\(<\text{expression-statement}\> \rightarrow \ <\text{expression}\> \ ;

\(<\text{expression}\> \rightarrow \ <\text{relational-expression}\>

| \ <\text{identifier}\> = \ <\text{expression}\>

\(<\text{relational-expression}\> \rightarrow \n
\ <\text{additive-expression}\> | \ <\text{relational expression}\> < \ <\text{additive-expression}\> | \ <\text{relational expression}\> > \ <\text{additive-expression}\> | \ <\text{relational expression}\> <= \ <\text{additive-expression}\> | \ <\text{relational expression}\> >= \ <\text{additive-expression}\>

\text{etc.}
Backus-Naur Form (BNF)

• BNF is the standardized form for specification of a programming language by its rules of production
• In BNF, the -> operator is written ::=
• ALGOL-60 first popularized the form
BNF described in terms of itself (from Wikipedia)

\[\text{<syntax>} ::= \text{<rule>} \mid \text{<rule>} \text{<syntax>} \]

\[\text{<rule>} ::= \text{<opt-whitespace}> "<" \text{<rule-name>} ">" \text{<opt-whitespace>} ":=" \text{<opt-whitespace>} \text{<expression>} \text{<line-end>} \]

\[\text{<opt-whitespace>} ::= "" \mid '"" \]
\[<!-- "" is empty string, i.e. no whitespace --> \]

\[\text{<expression>} ::= \text{<list>} \mid \text{<list>} "|" \text{<expression>} \]

\[\text{<line-end>} ::= \text{<opt-whitespace>} \text{<EOL>} \mid \text{<line-end>} \text{<line-end>} \]

\[\text{<list>} ::= \text{<term>} \mid \text{<term>} \text{<opt-whitespace>} \text{<list>} \]

\[\text{<term>} ::= \text{<literal>} \mid "<" \text{<rule-name>} ">" \]

\[\text{<literal>} ::= "" \text{<text>} "" \mid "" \text{<text>} "" \]
\[<!-- actually, the original BNF did not use quotes --> \]
Finite State Machines

• Diagram consisting of:
 – nodes, which represent finite states
 – arcs, which connect nodes
 – arcs represent transitions from one state to another

• Can be used to express language syntax
Finite State Machines

• Each FSM has a single start state (with an incoming arrow) and one or more final states, represented by a double circle: ○

• FSM can also represent incorrect syntax, illustrating dead ends – the next slide shows an example
FSM to parse an identifier

A: start state
B: final state
C: dead end; only reachable via incorrect syntax

Start

A

letter
digit

B

letter
digit
digit

C

letter
State Transition Table

<table>
<thead>
<tr>
<th>Current state</th>
<th>Next state</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Letter</td>
</tr>
<tr>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>C</td>
<td>C</td>
</tr>
</tbody>
</table>
Alternate version: FSM without fail state

![Diagram of an FSM with states A and B, transitions for letter and digit, and a table showing state transitions for letter and digit inputs]
Detecting illegal input with FSM

• Conclude in non-finite state (e.g. state C)
• Be unable to make transition (from start state A in alternate FSM, can go to state B with a character, but not with a digit)
Non-deterministic FSM

- Use if you have to decide between two or more transitions when parsing an input string
- At least one state has more than one possible transition state from itself to another state
- The next slide shows a non-deterministic FSM for parsing a signed integer
Non-deterministic FSM
State transition table for non-deterministic FSM

<table>
<thead>
<tr>
<th>Current state</th>
<th>Next state +</th>
<th>Next state −</th>
<th>Next state Digit</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>B</td>
<td>B, C</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td>B, C</td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Empty transitions

- Means transition on empty string
- Used for convenience

FSM at left shows another way to describe an integer; bottom transition doesn’t consume an input character – just indicates that sign (+/-) is optional.
Empty transitions

• FSM with empty transition(s) always non-deterministic
• FSM with empty transition(s) can always be converted to FSM without empty transition(s)
• Examples are shown on the next couple of slides
Eliminating empty transition: example 1

Given transition from X to Y on ϵ and Y to Z on a, construct transition from X to Z on a

Key point: $\epsilon a = a$
Eliminating empty transition: example 2

(a) The original FSM.

(b) The equivalent FSM without an empty transition.
Removing empty transition, example 3

(a) The original FSM.
(b) The equivalent FSM without an empty transition.
FSM and parsing

• Deterministic FSM always better basis for parsing:
 – can’t make wrong choice with valid string, ending up with dead end
 – so dead end always means invalid string

• Removing empty transitions may produce deterministic FSM from non-deterministic – but not always
Multiple token recognizer

• Token: set of terminal characters that has a distinct meaning as a group
• Token usually corresponds to some non-terminal in a language’s grammar
• Examples:
 – non-terminal: <data-type>
 – terminal: int
Multiple token recognizer

• Common use of FSM in translator: detect tokens in source string
• May be different token types that could appear in a particular position in code – for example, in Pep/8 assembly language, a .WORD can be followed by either a decimal or hexadecimal constant – so the assembler needs FSM that can recognize both
Recognizing hex and decimal values

(a) Separate machines for the h# and d# tokens.

(b) One nondeterministic FSM that recognizes the h# or d# token.
Hex/decimal FSM simplified

(a) Removing the empty transitions.
(b) Removing the inaccessible states.
FSM for parsing Pep/8 identifier or symbol definition